Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
Scripts ESI RubenGarciaVazquez
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
rubegar
Scripts ESI RubenGarciaVazquez
Commits
ea24f0e4
Commit
ea24f0e4
authored
May 26, 2024
by
rubegar
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
e93d4c25
Branches
main
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
k-medias.py
+38
-0
38 additions, 0 deletions
k-medias.py
with
38 additions
and
0 deletions
k-medias.py
0 → 100644
+
38
−
0
View file @
ea24f0e4
import
pandas
as
pd
from
sklearn.cluster
import
KMeans
from
sklearn.preprocessing
import
StandardScaler
import
matplotlib.pyplot
as
plt
# Cargar el archivo CSV
df
=
pd
.
read_csv
(
'
datos_normalizados.csv
'
)
# Seleccionar las columnas de interés
columnas_de_interes
=
[
'
cpu
'
,
'
cpus
'
,
'
diskread
'
,
'
diskwrite
'
,
'
maxmem
'
,
'
mem
'
,
'
netin
'
,
'
netout
'
]
# Reemplaza con tus columnas reales
datos
=
df
[
columnas_de_interes
]
# Estandarizar las características
scaler
=
StandardScaler
()
datos_escalados
=
scaler
.
fit_transform
(
datos
)
# Realizar el análisis de conglomerados k-medias
k
=
9
# Número de conglomerados, reemplaza con el número adecuado
modelo_kmeans
=
KMeans
(
n_clusters
=
k
,
random_state
=
42
)
modelo_kmeans
.
fit
(
datos_escalados
)
# Calcular los centroides
centroides
=
modelo_kmeans
.
cluster_centers_
centroides_desescalados
=
scaler
.
inverse_transform
(
centroides
)
# Guardar los centroides en un archivo CSV
centroides_df
=
pd
.
DataFrame
(
centroides_desescalados
,
columns
=
columnas_de_interes
)
centroides_df
.
to_csv
(
'
centroides_2.csv
'
,
index
=
False
)
print
(
'
Los centroides se han guardado en
"
centroides.csv
"
.
'
)
# Calcular y guardar el porcentaje de peso de cada conglomerado
conteo_clusters
=
pd
.
value_counts
(
modelo_kmeans
.
labels_
,
sort
=
False
)
pesos_clusters
=
conteo_clusters
/
len
(
df
)
*
100
# Porcentaje de cada cluster
pesos_clusters_df
=
pd
.
DataFrame
(
pesos_clusters
).
reset_index
()
pesos_clusters_df
.
columns
=
[
'
Cluster
'
,
'
Porcentaje
'
]
pesos_clusters_df
.
to_csv
(
'
pesos_clusters.csv
'
,
index
=
False
)
print
(
'
Los porcentajes de peso de cada conglomerado se han guardado en
"
pesos_clusters.csv
"
.
'
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment