Skip to content
Snippets Groups Projects

ServletInitializer.java

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    load.py 5.45 KiB
    # Copyright (c) 2017-present, Facebook, Inc.
    # All rights reserved.
    #
    # This source code is licensed under the license found in the
    # SENTEVAL_LICENSE file in the root directory of this source tree.
    #
    
    
    """
        This module contains different functions to load the test datasets
        of the SemEval's STS tasks from 2012 to 2016. This functions are based
        on those found in the SentEval toolkit.
    """
    
    
    import io
    import os
    import csv
    import numpy as np
    from utils import preprocess
    
    
    def load_frequencies(path):
        """ Loads the word frequencies """
        frequencies = {}
        with open(path) as tsv:
            tsv_reader = csv.reader(tsv, delimiter="\t")
            for row in tsv_reader: 
                frequencies[row[0]] = int(row[1])
            
        return frequencies
    
    
    def load_file_STS(path, datasets, preprocessing, verbose=False):
        """ Loads a STS test file and preprocesses its sentences """
        data = {}
    
        for dataset in datasets:
            # Load sentences pairs
            sent1, sent2 = zip(*[l.split("\t") for l in
                                io.open(path + '/STS.input.%s.txt' % dataset,
                                        encoding='utf8').read().splitlines()])
            # Load Gold Standard files (similarity scores)
            raw_scores = np.array([x for x in
                                    io.open(path + '/STS.gs.%s.txt' % dataset,
                                            encoding='utf8')
                                    .read().splitlines()])
            # Consider only pairs with a score
            not_empty_idx = raw_scores != ''
    
            gs_scores = [float(x) for x in raw_scores[not_empty_idx]]
    
            # Preprocess sentences
            if verbose:
                print("Preprocessing -{}-".format(dataset))
            sent1 = preprocess(sent1, **preprocessing)[not_empty_idx]
            sent2 = preprocess(sent2, **preprocessing)[not_empty_idx]
            if verbose:
                print("-{}- preprocessed correctly".format(dataset))
            
            # Sort data by length to minimize padding in batcher
            sorted_data = sorted(zip(sent1, sent2, gs_scores),
                                    key=lambda z: (len(z[0]), len(z[1]), z[2]))
            sent1, sent2, gs_scores = map(list, zip(*sorted_data))
    
            data[dataset] = (sent1, sent2, gs_scores)
            
        return data
    
    
    def load_SICK(path, preprocessing, verbose=False):
        """ Loads the SICK train, dev and test files and preprocess its sentences """
        if verbose:
            print('\n\n***** Task: SICK-Relatedness*****\n')
        sick_all = {}
        sick_train = load_file_SICK(os.path.join(path, 'SICK_train.txt'), preprocessing)
        sick_dev = load_file_SICK(os.path.join(path, 'SICK_trial.txt'), preprocessing)
        sick_test = load_file_SICK(os.path.join(path, 'SICK_test_annotated.txt'), preprocessing)
        
        sick_all['train'] = sick_train
        sick_all['test'] = sick_test
        sick_all['dev'] = sick_dev
        
        return sick_all
    
    
    def load_file_SICK(path, preprocessing):
        """ Loads a SICK file and preprocess its sentences """
        skip_first_line = True
        sent1 = []
        sent2 = []
        sim = []
        # Read file
        with io.open(path, 'r', encoding='utf-8') as f:
            for line in f:
                if skip_first_line:
                    skip_first_line = False
                else:
                    text = line.strip().split('\t')
                    sent1.append(text[1])
                    sent2.append(text[2])
                    sim.append(text[3])
    
        sent1 = preprocess(sent1, **preprocessing)
        sent2 = preprocess(sent2, **preprocessing)
        sim = [float(s) for s in sim]
        
        return (sent1, sent2, sim)
    
    
    def load_sts_12(path, preprocessing, verbose=False):
        """ Loads the SemEval-2012's Semantic Textual Similarity task"""
        if verbose:
            print('\n\n***** TASK: STS12 *****\n')
        datasets = ['MSRpar', 'MSRvid', 'SMTeuroparl',
                            'surprise.OnWN', 'surprise.SMTnews']
        return load_file_STS('{}/STS12-en-test'.format(path), datasets, preprocessing, verbose=verbose)
    
    
    def load_sts_13(path, preprocessing, verbose=False):
        """ Loads the SemEval-2013's Semantic Textual Similarity task"""
        # STS13 here does not contain the "SMT" subtask due to LICENSE issue
        if verbose:
            print('\n\n***** TASK: STS13 (-SMT) ***\n')
        datasets = ['FNWN', 'headlines', 'OnWN']
        return load_file_STS('{}/STS13-en-test'.format(path), datasets, preprocessing, verbose=verbose)
    
    
    def load_sts_14(path, preprocessing, verbose=False):
        """ Loads the SemEval-2014's Semantic Textual Similarity task"""
        if verbose:
            print('\n\n***** TASK: STS14 *****\n')
        datasets = ['deft-forum', 'deft-news', 'headlines',
                            'images', 'OnWN', 'tweet-news']
        return load_file_STS('{}/STS14-en-test'.format(path), datasets, preprocessing, verbose=verbose)
    
    
    def load_sts_15(path, preprocessing, verbose=False):
        """ Loads the SemEval-2015's Semantic Textual Similarity task"""
        if verbose:
            print('\n\n***** TASK: STS15 *****\n')
        datasets = ['answers-forums', 'answers-students',
                            'belief', 'headlines', 'images']
        return load_file_STS('{}/STS15-en-test'.format(path), datasets, preprocessing, verbose=verbose)
    
    
    def load_sts_16(path, preprocessing, verbose=False):
        """ Loads the SemEval-2016's Semantic Textual Similarity task"""
        if verbose:
            print('\n\n***** TASK: STS16 *****\n')
        datasets = ['answer-answer', 'headlines', 'plagiarism',
                            'postediting', 'question-question']
        return load_file_STS('{}/STS16-en-test'.format(path), datasets, preprocessing, verbose=verbose)