Skip to content
Snippets Groups Projects
Commit bd55019e authored by Mario Garrido Tapias's avatar Mario Garrido Tapias
Browse files

Histogram for each season for indicated variable

parent e65f34e3
No related branches found
No related tags found
No related merge requests found
......@@ -3,8 +3,27 @@ setwd("/home/mariogt/TFGs/Estadistica/")
#####################################
# FUNCIONES #
#####################################
# Returns the distribution of a variable from 3 seasons with a bar plot.
plotFor3Seasons <- function(data, variable) {
# Histograms for all seasons for the variable entered by parameter.
barpFor3Season <- function(data, variable) {
par(mfrow = c(1, 3))
dfs <- list()
maxPInPos <- 0
for (i in 1:3) {
season <- switch(i, ".1718", ".1819", ".1920")
var <- select(data, contains(paste(variable, season, sep = "")))
cat(names(var))
x <- as.numeric(var[,1])
h <- hist(x,
main = paste("Histograma para", titleForYAxis(variable), "(", season, ")", sep = " "),
col = "darkolivegreen3",
border = "mediumorchid4",
breaks = seq(from = 0, to = max(x) + 5, by = 5))
text(seq(2.5, max(x) + 2.5, 5), h$counts, labels = h$counts, adj = c(0.5, -0.5))
}
}
# Returns the count of a variable from 3 seasons for each position with a bar plot.
plotFor3SeasonsForPos <- function(data, variable) {
par(mfrow = c(1, 3))
dfs <- list()
maxPInPos <- 0
......@@ -25,11 +44,13 @@ plotFor3Seasons <- function(data, variable) {
position = c("Portero", "Defensa", "Mediocentro", "Delantero"),
numberOf = c(numGK, numDF, numMF, numFW)
)
cat(df$numberOf)
dfs[[i]] <- df
if(maxPInPos < max(df$numberOf)) {
maxPInPos <- max(df$numberOf)
}
}
for (i in 1:3) {
season <- switch(i, ".1718", ".1819", ".1920")
bp <- barplot(height = dfs[[i]]$numberOf, names = dfs[[i]]$position,
......@@ -53,14 +74,14 @@ univariantAnalysis <- function(data, variable, ids) {
bp <- ggplot(dl, aes(x = factor(season), y = variable)) +
geom_boxplot(alpha = 0.5, fill="darkblue", color="black", outlier.color="red")+
labs(title="Boxplot GCA por temporada", x = "Temporada", y = "Acciones de creación de gol")
labs(title="Boxplot por temporada", x = "Temporada", y = titleForYAxis(variable))
g <- group_by(dl, season)
g2 <- summarise(g, media = round(mean(variable), 1))
gp <- ggplot(g2, aes(x = season, media, group = 1))+
geom_point(alpha=0.5, color = "blue", size=3) +
geom_line(color = "red", size = 1) +
labs(title = "Promedio de GCA por temporada", x = "Temporada", y = "Acciones de creación de gol")
labs(title = "Promedio por temporada", x = "Temporada", y = titleForYAxis(variable))
figure <- ggarrange(bp, gp,
labels = c("A", "B"),
......@@ -126,85 +147,52 @@ ids <- t(ids)
##################################
# Goles y asistencias por 90 min #
##################################
univariantAnalysis(train, "goals_assists_per90", ids)
######
# xG #
######
univariantAnalysis(train, "xg", ids)
########
# npxG #
########
univariantAnalysis(train, "npxg", ids)
######
# xA #
######
univariantAnalysis(train, "xa", ids)
##################################
# Porcentaje de tiros a porteria #
##################################
#######################
# Porcentaje de pases #
#######################
passes_pct <- train %>% select(contains("passes_pct."))
passes_pct <- cbind(ids, passes_pct)
data_long = gather(passes_pct, season, passes, passes_pct.1718:passes_pct.1920, convert = TRUE, factor_key=TRUE)
data_long
data_long[, 3] <- as.numeric(data_long[, 3])
ggplot(data_long, aes(x = factor(season), y = passes)) +
geom_boxplot(alpha = 0.5, fill="darkblue", color="black", outlier.color="red")+
labs(title="Boxplot susceptibilidad por tiempo y entrenamiento", x="Temporada",
y = "Porcentaje de pases exitosos")
univariantAnalysis(train, "passes_pct", ids)
##################################
# Distancia total mediante pases #
##################################
univariantAnalysis(train, "passes_total_distance", ids)
#############################
# Pases que derivan en tiro #
#############################
plotFor3Seasons(train, "assisted_shots")
univariantAnalysis(train, "assisted_shots", ids)
###################################
# Cambios de orientación de juego #
###################################
univariantAnalysis(train, "passes_switches", ids)
###################
# SCA passes dead #
###################
sca_passes_dead <- train %>% select(contains("sca_passes_dead."))
sca_passes_dead <- cbind(ids, sca_passes_dead)
data_long = gather(sca_passes_dead, season, sca_passes_dead, sca_passes_dead.1718:sca_passes_dead.1920, convert = TRUE, factor_key=TRUE)
data_long
data_long[, 3] <- as.numeric(data_long[, 3])
ggplot(data_long, aes(x = factor(season), y = sca_passes_dead)) +
geom_boxplot(alpha = 0.5, fill="darkblue", color="black", outlier.color="red")+
labs(title="Boxplot SCA por temporada", x="Temporada",
y = "Acciones de creación de tiro")
univariantAnalysis(train, "sca_passes_dead", ids)
###################
# GCA passes dead #
###################
univariantAnalysis(train, "passes_intercepted", ids)
gca_passes_dead <- train %>% select(contains("gca_passes_dead."))
gca_passes_dead <- cbind(ids, gca_passes_dead)
par(mfrow = c(2, 1))
data_long = gather(gca_passes_dead, season, gca_passes_dead, gca_passes_dead.1718:gca_passes_dead.1920, factor_key=TRUE)
data_long
data_long[, 3] <- as.numeric(data_long[, 3])
ggplot(data_long, aes(x = factor(season), y = gca_passes_dead)) +
geom_boxplot(alpha = 0.5, fill="darkblue", color="black", outlier.color="red")+
labs(title="Boxplot GCA por temporada", x = "Temporada", y = "Acciones de creación de gol")
g <- group_by(data_long, season)
g2 <- summarise(g, media = round(mean(gca_passes_dead), 1))
ggplot(g2, aes(x = season, media, group = 1))+
geom_point(alpha=0.5, color = "blue", size=3) +
geom_line(color = "red", size = 1) +
labs(title = "Promedio de GCA por temporada", x = "Temporada", y = "Acciones de creación de gol")
univariantAnalysis(train, "gca_passes_dead", ids)
#######################
# Pases interceptados #
#######################
univariantAnalysis(train, "passes_intercepted", ids)
####################################
# Porcentaje de presiones exitosas #
####################################
......@@ -214,16 +202,21 @@ ggplot(g2, aes(x = season, media, group = 1))+
####################
# Faltas cometidas #
####################
univariantAnalysis(train, "fouls", ids)
#######################################
# Porcentaje de juegos aereos ganados #
#######################################
######################
# Penalties atajados #
######################
univariantAnalysis(train, "pens_att", ids)
##############################
# Goles en contra por 90 min #
##############################
univariantAnalysis(train, "goals_against_per90_gk", ids)
###################################
# Porcentaje de ocasiones paradas #
###################################
univariantAnalysis(train, "")
laLigaPlayers$foot <- as.factor(laLigaPlayers$foot)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment