Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
G
GMTool
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
margarr
GMTool
Commits
bd55019e
Commit
bd55019e
authored
May 22, 2022
by
Mario Garrido Tapias
Browse files
Options
Downloads
Patches
Plain Diff
Histogram for each season for indicated variable
parent
e65f34e3
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
UnivariateAnalysis.R
+43
-50
43 additions, 50 deletions
UnivariateAnalysis.R
with
43 additions
and
50 deletions
UnivariateAnalysis.R
+
43
−
50
View file @
bd55019e
...
...
@@ -3,8 +3,27 @@ setwd("/home/mariogt/TFGs/Estadistica/")
#####################################
# FUNCIONES #
#####################################
# Returns the distribution of a variable from 3 seasons with a bar plot.
plotFor3Seasons
<-
function
(
data
,
variable
)
{
# Histograms for all seasons for the variable entered by parameter.
barpFor3Season
<-
function
(
data
,
variable
)
{
par
(
mfrow
=
c
(
1
,
3
))
dfs
<-
list
()
maxPInPos
<-
0
for
(
i
in
1
:
3
)
{
season
<-
switch
(
i
,
".1718"
,
".1819"
,
".1920"
)
var
<-
select
(
data
,
contains
(
paste
(
variable
,
season
,
sep
=
""
)))
cat
(
names
(
var
))
x
<-
as.numeric
(
var
[,
1
])
h
<-
hist
(
x
,
main
=
paste
(
"Histograma para"
,
titleForYAxis
(
variable
),
"("
,
season
,
")"
,
sep
=
" "
),
col
=
"darkolivegreen3"
,
border
=
"mediumorchid4"
,
breaks
=
seq
(
from
=
0
,
to
=
max
(
x
)
+
5
,
by
=
5
))
text
(
seq
(
2.5
,
max
(
x
)
+
2.5
,
5
),
h
$
counts
,
labels
=
h
$
counts
,
adj
=
c
(
0.5
,
-0.5
))
}
}
# Returns the count of a variable from 3 seasons for each position with a bar plot.
plotFor3SeasonsForPos
<-
function
(
data
,
variable
)
{
par
(
mfrow
=
c
(
1
,
3
))
dfs
<-
list
()
maxPInPos
<-
0
...
...
@@ -25,11 +44,13 @@ plotFor3Seasons <- function(data, variable) {
position
=
c
(
"Portero"
,
"Defensa"
,
"Mediocentro"
,
"Delantero"
),
numberOf
=
c
(
numGK
,
numDF
,
numMF
,
numFW
)
)
cat
(
df
$
numberOf
)
dfs
[[
i
]]
<-
df
if
(
maxPInPos
<
max
(
df
$
numberOf
))
{
maxPInPos
<-
max
(
df
$
numberOf
)
}
}
for
(
i
in
1
:
3
)
{
season
<-
switch
(
i
,
".1718"
,
".1819"
,
".1920"
)
bp
<-
barplot
(
height
=
dfs
[[
i
]]
$
numberOf
,
names
=
dfs
[[
i
]]
$
position
,
...
...
@@ -53,14 +74,14 @@ univariantAnalysis <- function(data, variable, ids) {
bp
<-
ggplot
(
dl
,
aes
(
x
=
factor
(
season
),
y
=
variable
))
+
geom_boxplot
(
alpha
=
0.5
,
fill
=
"darkblue"
,
color
=
"black"
,
outlier.color
=
"red"
)
+
labs
(
title
=
"Boxplot
GCA
por temporada"
,
x
=
"Temporada"
,
y
=
"Acciones de creación de gol"
)
labs
(
title
=
"Boxplot por temporada"
,
x
=
"Temporada"
,
y
=
titleForYAxis
(
variable
)
)
g
<-
group_by
(
dl
,
season
)
g2
<-
summarise
(
g
,
media
=
round
(
mean
(
variable
),
1
))
gp
<-
ggplot
(
g2
,
aes
(
x
=
season
,
media
,
group
=
1
))
+
geom_point
(
alpha
=
0.5
,
color
=
"blue"
,
size
=
3
)
+
geom_line
(
color
=
"red"
,
size
=
1
)
+
labs
(
title
=
"Promedio
de GCA
por temporada"
,
x
=
"Temporada"
,
y
=
"Acciones de creación de gol"
)
labs
(
title
=
"Promedio por temporada"
,
x
=
"Temporada"
,
y
=
titleForYAxis
(
variable
)
)
figure
<-
ggarrange
(
bp
,
gp
,
labels
=
c
(
"A"
,
"B"
),
...
...
@@ -126,85 +147,52 @@ ids <- t(ids)
##################################
# Goles y asistencias por 90 min #
##################################
univariantAnalysis
(
train
,
"goals_assists_per90"
,
ids
)
######
# xG #
######
univariantAnalysis
(
train
,
"xg"
,
ids
)
########
# npxG #
########
univariantAnalysis
(
train
,
"npxg"
,
ids
)
######
# xA #
######
univariantAnalysis
(
train
,
"xa"
,
ids
)
##################################
# Porcentaje de tiros a porteria #
##################################
#######################
# Porcentaje de pases #
#######################
passes_pct
<-
train
%>%
select
(
contains
(
"passes_pct."
))
passes_pct
<-
cbind
(
ids
,
passes_pct
)
data_long
=
gather
(
passes_pct
,
season
,
passes
,
passes_pct.1718
:
passes_pct.1920
,
convert
=
TRUE
,
factor_key
=
TRUE
)
data_long
data_long
[,
3
]
<-
as.numeric
(
data_long
[,
3
])
ggplot
(
data_long
,
aes
(
x
=
factor
(
season
),
y
=
passes
))
+
geom_boxplot
(
alpha
=
0.5
,
fill
=
"darkblue"
,
color
=
"black"
,
outlier.color
=
"red"
)
+
labs
(
title
=
"Boxplot susceptibilidad por tiempo y entrenamiento"
,
x
=
"Temporada"
,
y
=
"Porcentaje de pases exitosos"
)
univariantAnalysis
(
train
,
"passes_pct"
,
ids
)
##################################
# Distancia total mediante pases #
##################################
univariantAnalysis
(
train
,
"passes_total_distance"
,
ids
)
#############################
# Pases que derivan en tiro #
#############################
plotFor3Seasons
(
train
,
"assisted_shots"
)
univariantAnalysis
(
train
,
"assisted_shots"
,
ids
)
###################################
# Cambios de orientación de juego #
###################################
univariantAnalysis
(
train
,
"passes_switches"
,
ids
)
###################
# SCA passes dead #
###################
sca_passes_dead
<-
train
%>%
select
(
contains
(
"sca_passes_dead."
))
sca_passes_dead
<-
cbind
(
ids
,
sca_passes_dead
)
data_long
=
gather
(
sca_passes_dead
,
season
,
sca_passes_dead
,
sca_passes_dead.1718
:
sca_passes_dead.1920
,
convert
=
TRUE
,
factor_key
=
TRUE
)
data_long
data_long
[,
3
]
<-
as.numeric
(
data_long
[,
3
])
ggplot
(
data_long
,
aes
(
x
=
factor
(
season
),
y
=
sca_passes_dead
))
+
geom_boxplot
(
alpha
=
0.5
,
fill
=
"darkblue"
,
color
=
"black"
,
outlier.color
=
"red"
)
+
labs
(
title
=
"Boxplot SCA por temporada"
,
x
=
"Temporada"
,
y
=
"Acciones de creación de tiro"
)
univariantAnalysis
(
train
,
"sca_passes_dead"
,
ids
)
###################
# GCA passes dead #
###################
univariantAnalysis
(
train
,
"passes_intercepted"
,
ids
)
gca_passes_dead
<-
train
%>%
select
(
contains
(
"gca_passes_dead."
))
gca_passes_dead
<-
cbind
(
ids
,
gca_passes_dead
)
par
(
mfrow
=
c
(
2
,
1
))
data_long
=
gather
(
gca_passes_dead
,
season
,
gca_passes_dead
,
gca_passes_dead.1718
:
gca_passes_dead.1920
,
factor_key
=
TRUE
)
data_long
data_long
[,
3
]
<-
as.numeric
(
data_long
[,
3
])
ggplot
(
data_long
,
aes
(
x
=
factor
(
season
),
y
=
gca_passes_dead
))
+
geom_boxplot
(
alpha
=
0.5
,
fill
=
"darkblue"
,
color
=
"black"
,
outlier.color
=
"red"
)
+
labs
(
title
=
"Boxplot GCA por temporada"
,
x
=
"Temporada"
,
y
=
"Acciones de creación de gol"
)
g
<-
group_by
(
data_long
,
season
)
g2
<-
summarise
(
g
,
media
=
round
(
mean
(
gca_passes_dead
),
1
))
ggplot
(
g2
,
aes
(
x
=
season
,
media
,
group
=
1
))
+
geom_point
(
alpha
=
0.5
,
color
=
"blue"
,
size
=
3
)
+
geom_line
(
color
=
"red"
,
size
=
1
)
+
labs
(
title
=
"Promedio de GCA por temporada"
,
x
=
"Temporada"
,
y
=
"Acciones de creación de gol"
)
univariantAnalysis
(
train
,
"gca_passes_dead"
,
ids
)
#######################
# Pases interceptados #
#######################
univariantAnalysis
(
train
,
"passes_intercepted"
,
ids
)
####################################
# Porcentaje de presiones exitosas #
####################################
...
...
@@ -214,16 +202,21 @@ ggplot(g2, aes(x = season, media, group = 1))+
####################
# Faltas cometidas #
####################
univariantAnalysis
(
train
,
"fouls"
,
ids
)
#######################################
# Porcentaje de juegos aereos ganados #
#######################################
######################
# Penalties atajados #
######################
univariantAnalysis
(
train
,
"pens_att"
,
ids
)
##############################
# Goles en contra por 90 min #
##############################
univariantAnalysis
(
train
,
"goals_against_per90_gk"
,
ids
)
###################################
# Porcentaje de ocasiones paradas #
###################################
univariantAnalysis
(
train
,
""
)
laLigaPlayers
$
foot
<-
as.factor
(
laLigaPlayers
$
foot
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment