Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
G
GMTool
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
margarr
GMTool
Commits
3da753a1
Commit
3da753a1
authored
Jun 19, 2022
by
Mario Garrido Tapias
Browse files
Options
Downloads
Patches
Plain Diff
Spearman matrix and pairs plots
parent
42924ea0
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
BivariateAnalysis.R
+101
-24
101 additions, 24 deletions
BivariateAnalysis.R
with
101 additions
and
24 deletions
BivariateAnalysis.R
+
101
−
24
View file @
3da753a1
...
...
@@ -4,19 +4,38 @@ setwd("/home/mariogt/TFGs/Estadistica/")
# FUNCIONES #
#####################################
puntos2d
<-
function
(
variableEnX
,
variableEnY
,
datos
,
temporada
,
color
)
{
# Variables AUXILIARES
maxX
<-
which.max
(
eval
(
parse
(
text
=
paste
(
"datos$"
,
variableEnX
,
"."
,
temporada
,
sep
=
""
))))
maxY
<-
which.max
(
eval
(
parse
(
text
=
paste
(
"datos$"
,
variableEnY
,
"."
,
temporada
,
sep
=
""
))))
xMean
<-
mean
(
eval
(
parse
(
text
=
paste
(
"datos$"
,
variableEnX
,
"."
,
temporada
,
sep
=
""
))))
ggplot
(
datos
,
aes
(
eval
(
parse
(
text
=
paste
(
variableEnX
,
"."
,
temporada
,
sep
=
""
))),
eval
(
parse
(
text
=
paste
(
variableEnY
,
"."
,
temporada
,
sep
=
""
)))))
+
if
(
missing
(
temporada
))
{
X
<-
paste
(
variableEnX
,
sep
=
""
)
Y
<-
paste
(
variableEnY
,
sep
=
""
)
}
else
{
X
<-
paste
(
variableEnX
,
"."
,
temporada
,
sep
=
""
)
Y
<-
paste
(
variableEnY
,
"."
,
temporada
,
sep
=
""
)
}
# VARIABLES AUXILIARES
# maxX <- which.max(eval(parse(text = paste("datos$",X, sep = ""))))
# maxY <- which.max(eval(parse(text = paste("datos$",Y, sep = ""))))
# xMean <- mean(eval(parse(text = paste("datos$",X, sep = ""))))
subset10X
<-
tail
(
datos
[
order
(
eval
(
parse
(
text
=
paste
(
"datos$"
,
X
)))),
],
10
)
subset10Y
<-
tail
(
datos
[
order
(
eval
(
parse
(
text
=
paste
(
"datos$"
,
Y
)))),
],
10
)
subsetXY
<-
subset10X
for
(
i
in
1
:
10
)
{
player
<-
subset10Y
$
player
[
i
]
repetido
<-
FALSE
for
(
j
in
1
:
10
)
{
if
(
player
==
subset10X
$
player
[
j
])
{
repetido
<-
TRUE
}
}
if
(
repetido
==
FALSE
){
subsetXY
<-
rbind
(
subsetXY
,
subset10Y
[
i
,])
}
}
cat
(
dim
(
subsetXY
)[
1
])
ggplot
(
datos
,
aes
(
eval
(
parse
(
text
=
variableEnX
)),
eval
(
parse
(
text
=
variableEnY
))))
+
geom_point
(
colour
=
color
)
+
labs
(
x
=
titleForYAxis
(
variableEnX
),
y
=
titleForYAxis
(
variableEnY
))
+
geom_point
(
colour
=
color
)
+
geom_label_repel
(
data
=
subset
(
datos
,
eval
(
parse
(
text
=
paste
(
variableEnX
,
"."
,
temporada
,
sep
=
""
)))
>
eval
(
parse
(
text
=
paste
(
variableEnX
,
"."
,
temporada
,
"["
,
maxX
,
"]"
,
sep
=
""
)))
-
xMean
),
aes
(
label
=
player
),
geom_label_repel
(
subsetXY
,
mapping
=
aes
(
label
=
player
),
box.padding
=
0.35
,
point.padding
=
0.5
,
segment.color
=
'grey50'
)
...
...
@@ -40,7 +59,7 @@ scatterForCorr <- function(datos, variableX, variableY, season, col) {
add.params
=
list
(
color
=
col
,
fill
=
"lightgray"
),
# Customize reg. line
conf.int
=
TRUE
# Add confidence interval
)
sp
+
stat_cor
(
method
=
"pearson"
,
label.x
=
medianX
,
label.y
=
maxY
+1.5
)
+
sp
+
stat_cor
(
method
=
"pearson"
,
label.x
=
medianX
+10
,
label.y
=
maxY
+1
0
.5
)
+
xlab
(
titleForYAxis
(
variableX
))
+
ylab
(
titleForYAxis
(
variableY
))
}
...
...
@@ -56,6 +75,7 @@ library(yarrr)
library
(
ggrepel
)
library
(
PerformanceAnalytics
)
# o
library
(
ggpubr
)
library
(
RColorBrewer
)
# paletas
# Seleccion de las varibles de ESTUDIO
...
...
@@ -107,9 +127,9 @@ scatterForCorr(trainStudyAux, "passes_completed", "passes_pct", "1819")
scatterForCorr
(
trainStudyAux
,
"passes"
,
"passes_pct"
,
"1819"
)
# Comprobacion para variables totales promediadas
scatterForCorr
(
train
Study
,
"passes"
,
"passes_completed"
)
scatterForCorr
(
train
Study
,
"passes_completed"
,
"passes_pct"
)
scatterForCorr
(
train
Study
,
"passes"
,
"passes_pct"
)
scatterForCorr
(
laLigaPlayers
Study
,
"passes"
,
"passes_completed"
,
col
=
"#9A32CD"
)
scatterForCorr
(
laLigaPlayers
Study
,
"passes_completed"
,
"passes_pct"
,
col
=
"#9A32CD"
)
scatterForCorr
(
laLigaPlayers
Study
,
"passes"
,
"passes_pct"
,
col
=
"#9A32CD"
)
scatterForCorr
(
trainStudy
,
"pass_targets"
,
"passes_received"
,
"1819"
)
scatterForCorr
(
trainStudy
,
"passes_received"
,
"passes_received_pct"
,
"1819"
)
...
...
@@ -130,9 +150,9 @@ scatterForCorr(train, "aerials_contested", "aerials_won", "1819")
scatterForCorr
(
train
,
"aerials_won"
,
"aerials_won_pct"
,
"1819"
)
scatterForCorr
(
train
,
"aerials_contested"
,
"aerials_won_pct"
,
"1819"
)
scatterForCorr
(
train
Study
,
"aerials_contested"
,
"aerials_won"
)
scatterForCorr
(
train
Study
,
"aerials_won"
,
"aerials_won_pct"
)
scatterForCorr
(
train
Study
,
"aerials_contested"
,
"aerials_won_pct"
)
scatterForCorr
(
laLigaPlayers
Study
,
"aerials_contested"
,
"aerials_won"
,
col
=
"#00688B"
)
scatterForCorr
(
laLigaPlayers
Study
,
"aerials_won"
,
"aerials_won_pct"
,
col
=
"#00688B"
)
scatterForCorr
(
laLigaPlayers
Study
,
"aerials_contested"
,
"aerials_won_pct"
,
col
=
"#00688B"
)
#CD5555
scatterForCorr
(
trainStudy
,
"dribbles"
,
"dribbles_completed"
,
"1819"
)
...
...
@@ -140,9 +160,24 @@ scatterForCorr(trainStudy, "dribbles_completed", "dribbles_completed_pct", "1819
scatterForCorr
(
trainStudy
,
"dribbles"
,
"dribbles_completed_pct"
,
"1819"
)
#40E0D0
scatterForCorr
(
trainStudy
,
"shots_on_target_against"
,
"saves"
,
"1819"
)
scatterForCorr
(
trainStudy
,
"saves"
,
"save_pct"
,
"1819"
)
scatterForCorr
(
trainStudy
,
"shots_on_target_against"
,
"save_pct"
,
"1819"
)
scatterForCorr
(
trainStudy
,
"shots_on_target_against"
,
"saves"
,
"1819"
,
"#40E0D0"
)
scatterForCorr
(
trainStudy
,
"saves"
,
"save_pct"
,
"1819"
,
"#40E0D0"
)
scatterForCorr
(
trainStudy
,
"shots_on_target_against"
,
"save_pct"
,
"1819"
,
"#40E0D0"
)
#40E0D0
scatterForCorr
(
laLigaPlayers
,
"pens_saved"
,
"pens_played"
,
"1819"
,
"#40E0D0"
)
scatterForCorr
(
laLigaPlayers
,
"pens_saved"
,
"pens_saved_pct"
,
"1819"
,
"#40E0D0"
)
scatterForCorr
(
laLigaPlayers
,
"pens_played"
,
"pens_saved_pct"
,
"1819"
,
"#40E0D0"
)
#CDC673
scatterForCorr
(
laLigaPlayers
,
"pens_made"
,
"pens_att"
,
"1819"
,
"#CDC673"
)
scatterForCorr
(
laLigaPlayers
,
"pens_made"
,
"pens_made_pct"
,
"1819"
,
"#CDC673"
)
scatterForCorr
(
laLigaPlayers
,
"pens_att"
,
"pens_made_pct"
,
"1819"
,
"#CDC673"
)
#00688B
scatterForCorr
(
laLigaPlayers
,
"tackles_won"
,
"tackles"
,
"1819"
,
"#00688B"
)
scatterForCorr
(
laLigaPlayers
,
"tackles_won"
,
"tackles_pct"
,
"1819"
,
"#00688B"
)
scatterForCorr
(
laLigaPlayers
,
"tackles"
,
"tackles_pct"
,
"1819"
,
"#00688B"
)
# Add correlation coefficient
sp
+
stat_cor
(
method
=
"pearson"
,
label.x
=
,
label.y
=
30
)
...
...
@@ -198,6 +233,48 @@ variables <- c("xa.", "passes.", "passes_pct.", "passes_switches.",
"sca_passes_dead."
,
"gca_passes_dead."
,
"sca_passes_live."
,
"gca_passes_live."
,
"sca_dribbles."
,
"gca_dribbles."
,
"sca_fouled."
,
"gca_fouled."
,
"passes_intercepted."
,
"ball_recoveries."
,
"pressure_regains."
,
"fouls."
,
"tackles."
,
"tackles_pct."
,
"aerials_contested."
,
"aerials_won_pct."
,
"pens_played."
,
"pens_saved_pct."
,
"saves."
,
"save_pct."
)
variables
<-
c
(
"age"
,
"height"
,
"xa."
,
"passes."
,
"passes_pct."
,
"passes_switches."
,
"pass_targets."
,
"passes_received_pct."
,
"passes_pressure."
,
"npxg."
,
"shots_total."
,
"shots_on_target_pct."
,
"pens_att."
,
"pens_made_pct."
,
"dribbles."
,
"dribbles_completed_pct."
,
"goals_assists_per90."
,
"sca_passes_dead."
,
"gca_passes_dead."
,
"sca_passes_live."
,
"gca_passes_live."
,
"sca_dribbles."
,
"gca_dribbles."
,
"sca_fouled."
,
"gca_fouled."
,
"passes_intercepted."
,
"ball_recoveries."
,
"pressure_regains."
,
"fouls."
,
"tackles."
,
"tackles_pct."
,
"aerials_contested."
,
"aerials_won_pct."
)
globalColNames
<-
c
()
for
(
variable
in
variables
)
{
variable
<-
gsub
(
"\\."
,
""
,
variable
)
globalColNames
<-
c
(
globalColNames
,
variable
)
}
laLigaPlayersStudy
<-
laLigaPlayersStudy
%>%
select
(
all_of
(
globalColNames
))
laLigaPlayersStudy
<-
data.frame
(
lapply
(
laLigaPlayersStudy
,
as.numeric
))
laLigaPlayersStudyStand
<-
data.frame
(
scale
(
laLigaPlayersStudy
))
correlacion
<-
round
(
cor
(
laLigaPlayersStudyStand
),
1
)
p.mat
<-
cor_pmat
(
laLigaPlayersStudyStand
)
mypalette
<-
brewer.pal
(
n
=
3
,
name
=
'BuPu'
)
ggcorrplot
(
correlacion
,
type
=
"upper"
,
title
=
"Matriz de correlaciones ordenada"
,
hc.order
=
FALSE
,
lab
=
TRUE
,
pch.cex
=
1.2
,
lab_size
=
2.5
,
tl.cex
=
9
,
colors
=
mypalette
,
ggtheme
=
ggplot2
::
theme_gray
,
p.mat
=
p.mat
,
insig
=
"blank"
)
correlacion
<-
round
(
cor
(
laLigaPlayersStudyStand
,
method
=
"spearman"
),
1
)
ggcorrplot
(
correlacion
,
type
=
"upper"
,
title
=
"Matriz de correlaciones ordenada"
,
hc.order
=
FALSE
,
lab
=
TRUE
,
pch.cex
=
1.2
,
lab_size
=
2.5
,
tl.cex
=
9
,
colors
=
mypalette
,
ggtheme
=
ggplot2
::
theme_gray
,
p.mat
=
p.mat
,
insig
=
"blank"
)
# Imagenes: 700X500
# Presiones en las que roba el balón ~ Pases interceptados
puntos2d
(
"pressure_regains"
,
"passes_intercepted"
,
laLigaPlayersStudy
,
color
=
"#00688B"
)
# Porcentaje de tackling ~ Faltas
puntos2d
(
"tackles_pct"
,
"fouls"
,
laLigaPlayersStudy
,
color
=
"#00688B"
)
# Regates ~ Pases en los que es objetivo
puntos2d
(
"dribbles"
,
"pass_targets"
,
laLigaPlayersStudy
,
color
=
"#CD5555"
)
# SCA a balón parado ~ Cambios de juego
puntos2d
(
"sca_passes_dead"
,
"passes_switches"
,
laLigaPlayersStudy
,
color
=
"#9A32CD"
)
# Paradas contra Tiros a puerta en contra
goalkeepers
<-
laLigaPlayers
[
which
(
laLigaPlayers
$
position.1718
==
"GK"
),]
datos
<-
laLigaPlayers
[
which
(
laLigaPlayers
$
position.1718
==
"GK"
)]
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment