Skip to content
Snippets Groups Projects
Commit 1b3f5794 authored by Mario Garrido Tapias's avatar Mario Garrido Tapias
Browse files

All variables contemplated

parent e41842cd
No related branches found
No related tags found
No related merge requests found
......@@ -3,6 +3,24 @@ setwd("/home/mariogt/TFGs/Estadistica/")
#####################################
# FUNCIONES #
#####################################
puntos2d <- function(variableEnX, variableEnY, datos, temporada, color) {
# Variables AUXILIARES
maxX <- which.max(eval(parse(text = paste("datos$",variableEnX,".",temporada, sep = ""))))
maxY <- which.max(eval(parse(text = paste("datos$",variableEnY,".",temporada, sep = ""))))
xMean <- mean(eval(parse(text = paste("datos$",variableEnX,".",temporada, sep = ""))))
ggplot(datos, aes(eval(parse(text = paste(variableEnX,".",temporada, sep = ""))),
eval(parse(text = paste(variableEnY,".",temporada, sep = ""))))) +
labs(x = titleForYAxis(variableEnX), y = titleForYAxis(variableEnY)) +
geom_point(colour = color) +
geom_label_repel(data = subset(datos,
eval(parse(text = paste(variableEnX,".",temporada, sep = ""))) >
eval(parse(text = paste(variableEnX,".",temporada, "[", maxX, "]", sep = ""))) - xMean),
aes(label = player),
box.padding = 0.35,
point.padding = 0.5,
segment.color = 'grey50')
}
#############
# LIBRERIAS #
......@@ -10,31 +28,57 @@ setwd("/home/mariogt/TFGs/Estadistica/")
library(dplyr)
library(ggplot2)
library(ggcorrplot) # Correlation matrix visualization
library(correlation) # Correlation matrix table
library(RColorBrewer)
library(yarrr)
library(ggrepel)
library(PerformanceAnalytics)
# Seleccion de las varibles de ESTUDIO
variables <- paste(c("age.", "height.", "goals_assists_per90.", "xg.", "npxg.", "xa.", "shots_on_target_pct.", "passes_pct.",
"assisted_shots.", "passes_switches.", "sca_passes_dead.", "gca_passes_dead.", "passes_intercepted.",
"pressure_regains.", "dribbles_completed_pct.", "fouls.", "ball_recoveries.", "aerials_won_pct.",
"pens_att.", "goals_against_per90_gk.", "save_pct."), "1718", sep = "")
# variables <- paste(c("age.", "height.", "goals_assists_per90.", "xg.", "npxg.", "xa.", "shots_on_target_pct.", "passes_pct.",
# "assisted_shots.", "passes_switches.", "sca_passes_dead.", "gca_passes_dead.", "passes_intercepted.",
# "pressure_regains.", "dribbles_completed_pct.", "fouls.", "ball_recoveries.", "aerials_won_pct.",
# "pens_att.", "goals_against_per90_gk.", "save_pct."), "1718", sep = "")
# variables <- paste(c("age.", "height.", "goals_assists_per90.", "xg.", "npxg.", "xa.", "shots_on_target_pct.", "passes_pct.",
# "assisted_shots.", "passes_switches.", "sca_passes_dead.", "gca_passes_dead.", "passes_intercepted.",
# "pressure_regains.", "dribbles_completed_pct.", "fouls.", "ball_recoveries.", "aerials_won_pct.",
# "pens_att.", "goals_against_per90_gk.", "save_pct.", "passes_received_pct.", "goals_per_shot.", "passes_pressure."), "1718", sep = "")
variables <- paste(c("age.", "height.", "goals_assists_per90.", "xg.", "npxg.", "xa.", "shots_on_target_pct.", "passes_pct.",
"assisted_shots.", "passes_switches.", "sca_passes_dead.", "gca_passes_dead.", "passes_intercepted.",
"pressure_regains.", "dribbles_completed_pct.", "fouls.", "ball_recoveries.", "aerials_won_pct.",
"pens_att.", "goals_against_per90_gk.", "save_pct.",
"sca_passes_live.", "gca_passes_live.", "sca_dribbles.", "gca_dribbles.", "sca_fouled.", "gca_fouled."), "1718", sep = "")
trainStudy <- train %>% select(contains(variables))
trainStudy <- (trainStudy)
trainStudy <- data.frame(lapply(trainStudy, as.numeric))
variables <- paste(c("age.", "height.",
"xa.", "passes_completed.", "passes.", "passes_pct.", "passes_total_distance.", "assisted_shots.", "passes_switches.",
"pass_targets.", "passes_received.", "passes_received_pct.", "passes_pressure.",
"xg.", "npxg.", "shots_total.", "shots_on_target.", "shots_on_target_pct.", "goals_per_shot.", "pens_made.", "pens_att.",
"dribbles.", "dribbles_completed.", "dribbles_completed_pct.", "goals_assists_per90.",
"sca_passes_dead.", "gca_passes_dead.", "sca_passes_live.", "gca_passes_live.", "sca_dribbles.", "gca_dribbles.", "sca_fouled.", "gca_fouled.",
"passes_intercepted.", "ball_recoveries.", "pressure_regains.", "fouls.", "tackles_won", "tackles", "aerials_won.", "aerials_lost.", "aerials_won_pct.",
"goals_against_per90_gk.", "pens_saved.", "pens_allowed.", "shots_on_target_against.", "saves.", "save_pct."), "1718", sep = "")
correlacion <- round(cor(trainStudy), 1)
p.mat <- cor_pmat(trainStudy)
trainStudy <- train %>% select(starts_with(variables))
trainStudy <- data.frame(lapply(trainStudy, as.numeric))
trainStudyStand <- as.data.frame(scale(trainStudy))
correlacion <- round(cor(trainStudyStand), 1)
p.mat <- cor_pmat(trainStudyStand)
mypalette <- brewer.pal(n = 3, name = 'BuPu')
ggcorrplot(correlacion, type = "upper",
title = "Matriz de correlaciones ordenada",
hc.order = TRUE, lab = TRUE,
pch.cex = 1.2, lab_size = 2.5,
hc.order = FALSE, lab = TRUE,
pch.cex = 1.2, lab_size = 2.5, tl.cex = 9,
colors = mypalette, ggtheme = ggplot2::theme_gray, p.mat = p.mat, insig = "blank")
correlation::correlation(trainStudyStand,
include_factors = TRUE, method = "pearson")
# Porcentaje SI/NO
passes <- trainStudy[, 4:6]
chart.Correlation(passes, histogram = TRUE, pch = 18)
#######################
# ANALISIS BIVARIANTE #
#######################
# Paradas contra Tiros a puerta en contra
goalkeepers <- laLigaPlayers[which(laLigaPlayers$position.1718 == "GK"),]
datos <- laLigaPlayers[which(laLigaPlayers$position.1718 == "GK")]
puntos2d("saves",
"shots_on_target_against",
goalkeepers, "1718", "firebrick3")
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment