Skip to content
Snippets Groups Projects
GenerarMascaras.ipynb 2.94 KiB
Newer Older
dardela's avatar
dardela committed
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b6649867",
   "metadata": {},
   "outputs": [],
   "source": [
    "from astropy.io import fits\n",
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "import glob\n",
    "import cv2\n",
    "from PIL import Image\n",
    "import copy\n",
    "import os"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ed76de12",
   "metadata": {},
   "outputs": [],
   "source": [
    "ruta_fits = \"RUTA_INPUT_FITS/\"\n",
    "ruta_guardar_mascaras_2_clases=\"RUTA_OUTPUT_MASCARAS/\"\n",
    "tam_fotos_x=512\n",
    "tam_fotos_y=512"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4ee87765",
   "metadata": {},
   "outputs": [],
   "source": [
    "if not os.path.exists(ruta_guardar_mascaras_2_clases):\n",
    "    os.makedirs(ruta_guardar_mascaras_2_clases)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "187a3d92",
   "metadata": {},
   "source": [
    "## Creamos máscaras de segmentación con 2 clases y de 3 clases"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "62e367b8",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_numero_galaxia(nombre_galaxia:str):\n",
    "    numero_galaxia = nombre_galaxia.split('.')[0].split('_')[-1]\n",
    "    return numero_galaxia"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "25dc0528",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "#Leemos las galaxy convolved y las stream convolved\n",
    "rutas_stream_convolved = glob.glob(ruta_fits+\"stream_pix_above_surf_bright_limit_*.fits\")\n",
    "\n",
    "for ruta_stream in rutas_stream_convolved:\n",
    "    print(ruta_stream)\n",
    "    numero_galaxia = get_numero_galaxia(ruta_stream)\n",
    "    print(numero_galaxia)\n",
    "    \n",
    "    #Hacemos el mismo proceso para la imagen de la cola de marea\n",
    "    stream_fits = fits.open(ruta_stream)\n",
    "    array_imagen_stream_fits = stream_fits[1].data\n",
    "    mascara_cola = np.zeros((tam_fotos_x,tam_fotos_y))\n",
    "    mascara_cola[array_imagen_stream_fits!=0] = 1\n",
    "    #Combinamos las mascaras \n",
    "    \n",
    "    #Guardamos la mascara de la cola\n",
    "    cv2.imwrite(ruta_guardar_mascaras_2_clases+\"mascara_\"+str(numero_galaxia)+\".png\",mascara_cola)\n",
    "    #Mostramos la mascara\n",
    "    plt.imshow(mascara_cola,interpolation='none', origin=\"lower\")\n",
    "    plt.show()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}