diff --git a/Aplicacion/Codigo/predict.py b/Aplicacion/Codigo/predict.py new file mode 100644 index 0000000000000000000000000000000000000000..8ecb2552ff063fc174d0ceb080f1e163977d1888 --- /dev/null +++ b/Aplicacion/Codigo/predict.py @@ -0,0 +1,122 @@ +import tensorflow as tf +from tensorflow import keras +from keras.models import load_model +from keras.preprocessing import image +import numpy as np +from PIL import Image + +# Display +#from IPython.display import Image, display +#import matplotlib.pyplot as plt +import matplotlib.cm as cm + +class ModeloCovid: + + #Constructor de clase, importa el modelo y guarda un diccionario con las etiquetas de clase + def __init__(self): + self.model = load_model("./modeloGrey9M.h5") + self.num2label = {0:'COVID-19', 1:'NORMAL', 2:'Viral Pneumonia'} + self.dims = self.model.input_shape[1:3] + + #CON UNA IMAGEN Y LAS DIMENSIONES LA LEE DE FORMA ADECUADA + def _get_img_array(self, img_path, size): + # `img` is a PIL image of size 299x299 + img = keras.preprocessing.image.load_img(img_path, target_size=size, color_mode="grayscale") + # `array` is a float32 Numpy array of shape (299, 299, 3) + array = keras.preprocessing.image.img_to_array(img) + # We add a dimension to transform our array into a "batch" + # of size (1, 299, 299, 3) + array = np.expand_dims(array, axis=0) + return array + + def _make_gradcam_heatmap(self,img_array, model, last_conv_layer_name, pred_index=None): + # First, we create a model that maps the input image to the activations + # of the last conv layer as well as the output predictions + grad_model = tf.keras.models.Model( + [model.inputs], [model.get_layer(last_conv_layer_name).output, model.output] + ) + + # Then, we compute the gradient of the top predicted class for our input image + # with respect to the activations of the last conv layer + with tf.GradientTape() as tape: + last_conv_layer_output, preds = grad_model(img_array) + if pred_index is None: + pred_index = tf.argmax(preds[0]) + class_channel = preds[:, pred_index] + + # This is the gradient of the output neuron (top predicted or chosen) + # with regard to the output feature map of the last conv layer + grads = tape.gradient(class_channel, last_conv_layer_output) + + # This is a vector where each entry is the mean intensity of the gradient + # over a specific feature map channel + pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) + + # We multiply each channel in the feature map array + # by "how important this channel is" with regard to the top predicted class + # then sum all the channels to obtain the heatmap class activation + last_conv_layer_output = last_conv_layer_output[0] + heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis] + heatmap = tf.squeeze(heatmap) + + # For visualization purpose, we will also normalize the heatmap between 0 & 1 + heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap) + return heatmap.numpy() + + + #A partir de una imagen retorna su clase mas problable tras la prediccion del modelo + def predict(self,img_path): + img = image.load_img(img_path,target_size=self.dims, color_mode="grayscale") + img = np.asarray(img)/255.0 + img = np.expand_dims(img, axis=0) + img = np.expand_dims(img, axis=3) + + output = self.model.predict(img)#Aqui esta el vector de probabilidades + prediction = np.argmax(output, axis=1).astype(np.int) + + return self.num2label[prediction[0]],output + def gradCam(self, img_path, cam_path="./static/GRADCAM_img/cam.jpg"): + model_builder = keras.applications.xception.Xception + preprocess_input = keras.applications.xception.preprocess_input + decode_predictions = keras.applications.xception.decode_predictions + last_conv_layer_name = "conv2d_9" + + img_array = preprocess_input(self._get_img_array(img_path, size=self.dims)) + # Remove last layer's softmax + _model=self.model + _model.layers[-1].activation = None + + heatmap = self._make_gradcam_heatmap(img_array, _model, last_conv_layer_name) + superimposed_img = self._save_and_display_gradcam(img_path,heatmap,cam_path) + return heatmap, superimposed_img + + def _save_and_display_gradcam(self,img_path, heatmap, cam_path, alpha=0.4): + # Load the original image + + img = keras.preprocessing.image.load_img(img_path, color_mode="grayscale") + img = keras.preprocessing.image.img_to_array(img) + + # Rescale heatmap to a range 0-255 + heatmap = np.uint8(255 * heatmap) + + # Use jet colormap to colorize heatmap + jet = cm.get_cmap("jet") + + # Use RGB values of the colormap + jet_colors = jet(np.arange(256))[:, :3] + jet_heatmap = jet_colors[heatmap] + + # Create an image with RGB colorized heatmap + jet_heatmap = keras.preprocessing.image.array_to_img(jet_heatmap) + jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0])) + jet_heatmap = keras.preprocessing.image.img_to_array(jet_heatmap) + + # Superimpose the heatmap on original image + superimposed_img = jet_heatmap * alpha + img + superimposed_img = keras.preprocessing.image.array_to_img(superimposed_img) + + # Save the superimposed image + superimposed_img.save(cam_path) + + # Display Grad CAM + return superimposed_img