diff --git a/Aplicacion/Codigo/predict.py b/Aplicacion/Codigo/predict.py
deleted file mode 100644
index 8ecb2552ff063fc174d0ceb080f1e163977d1888..0000000000000000000000000000000000000000
--- a/Aplicacion/Codigo/predict.py
+++ /dev/null
@@ -1,122 +0,0 @@
-import tensorflow as tf
-from tensorflow import keras
-from keras.models import load_model
-from keras.preprocessing import image
-import numpy as np
-from PIL import Image
-
-# Display
-#from IPython.display import Image, display
-#import matplotlib.pyplot as plt
-import matplotlib.cm as cm
-
-class ModeloCovid:
-
-    #Constructor de clase, importa el modelo y guarda un diccionario con las etiquetas de clase
-    def __init__(self):
-        self.model = load_model("./modeloGrey9M.h5")
-        self.num2label = {0:'COVID-19', 1:'NORMAL', 2:'Viral Pneumonia'}
-        self.dims = self.model.input_shape[1:3]
-
-    #CON UNA IMAGEN Y LAS DIMENSIONES LA LEE DE FORMA ADECUADA
-    def _get_img_array(self, img_path, size):
-        # `img` is a PIL image of size 299x299
-        img = keras.preprocessing.image.load_img(img_path, target_size=size, color_mode="grayscale")
-        # `array` is a float32 Numpy array of shape (299, 299, 3)
-        array = keras.preprocessing.image.img_to_array(img)
-        # We add a dimension to transform our array into a "batch"
-        # of size (1, 299, 299, 3)
-        array = np.expand_dims(array, axis=0)
-        return array
-    
-    def _make_gradcam_heatmap(self,img_array, model, last_conv_layer_name, pred_index=None):
-        # First, we create a model that maps the input image to the activations
-        # of the last conv layer as well as the output predictions
-        grad_model = tf.keras.models.Model(
-            [model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]
-        )
-
-        # Then, we compute the gradient of the top predicted class for our input image
-        # with respect to the activations of the last conv layer
-        with tf.GradientTape() as tape:
-            last_conv_layer_output, preds = grad_model(img_array)
-            if pred_index is None:
-                pred_index = tf.argmax(preds[0])
-            class_channel = preds[:, pred_index]
-
-        # This is the gradient of the output neuron (top predicted or chosen)
-        # with regard to the output feature map of the last conv layer
-        grads = tape.gradient(class_channel, last_conv_layer_output)
-
-        # This is a vector where each entry is the mean intensity of the gradient
-        # over a specific feature map channel
-        pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
-
-        # We multiply each channel in the feature map array
-        # by "how important this channel is" with regard to the top predicted class
-        # then sum all the channels to obtain the heatmap class activation
-        last_conv_layer_output = last_conv_layer_output[0]
-        heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
-        heatmap = tf.squeeze(heatmap)
-
-        # For visualization purpose, we will also normalize the heatmap between 0 & 1
-        heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
-        return heatmap.numpy()
-    
-    
-    #A partir de una imagen retorna su clase mas problable tras la prediccion del modelo	
-    def predict(self,img_path):
-        img = image.load_img(img_path,target_size=self.dims, color_mode="grayscale")
-        img = np.asarray(img)/255.0
-        img = np.expand_dims(img, axis=0)
-        img = np.expand_dims(img, axis=3)
-
-        output = self.model.predict(img)#Aqui esta el vector de probabilidades
-        prediction = np.argmax(output, axis=1).astype(np.int)
-
-        return self.num2label[prediction[0]],output
-    def gradCam(self, img_path, cam_path="./static/GRADCAM_img/cam.jpg"):
-        model_builder = keras.applications.xception.Xception
-        preprocess_input = keras.applications.xception.preprocess_input
-        decode_predictions = keras.applications.xception.decode_predictions
-        last_conv_layer_name = "conv2d_9"
-        
-        img_array = preprocess_input(self._get_img_array(img_path, size=self.dims))
-        # Remove last layer's softmax
-        _model=self.model
-        _model.layers[-1].activation = None
-        
-        heatmap = self._make_gradcam_heatmap(img_array, _model, last_conv_layer_name)
-        superimposed_img = self._save_and_display_gradcam(img_path,heatmap,cam_path)
-        return heatmap, superimposed_img
-        
-    def _save_and_display_gradcam(self,img_path, heatmap, cam_path, alpha=0.4):
-        # Load the original image
-
-        img = keras.preprocessing.image.load_img(img_path, color_mode="grayscale")
-        img = keras.preprocessing.image.img_to_array(img)
-
-        # Rescale heatmap to a range 0-255
-        heatmap = np.uint8(255 * heatmap)
-
-        # Use jet colormap to colorize heatmap
-        jet = cm.get_cmap("jet")
-
-        # Use RGB values of the colormap
-        jet_colors = jet(np.arange(256))[:, :3]
-        jet_heatmap = jet_colors[heatmap]
-
-        # Create an image with RGB colorized heatmap
-        jet_heatmap = keras.preprocessing.image.array_to_img(jet_heatmap)
-        jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))
-        jet_heatmap = keras.preprocessing.image.img_to_array(jet_heatmap)
-
-        # Superimpose the heatmap on original image
-        superimposed_img = jet_heatmap * alpha + img
-        superimposed_img = keras.preprocessing.image.array_to_img(superimposed_img)
-
-        # Save the superimposed image
-        superimposed_img.save(cam_path)
-
-        # Display Grad CAM
-        return superimposed_img