diff --git a/Aplicacion/Codigo/predict.py b/Aplicacion/Codigo/predict.py deleted file mode 100644 index 8ecb2552ff063fc174d0ceb080f1e163977d1888..0000000000000000000000000000000000000000 --- a/Aplicacion/Codigo/predict.py +++ /dev/null @@ -1,122 +0,0 @@ -import tensorflow as tf -from tensorflow import keras -from keras.models import load_model -from keras.preprocessing import image -import numpy as np -from PIL import Image - -# Display -#from IPython.display import Image, display -#import matplotlib.pyplot as plt -import matplotlib.cm as cm - -class ModeloCovid: - - #Constructor de clase, importa el modelo y guarda un diccionario con las etiquetas de clase - def __init__(self): - self.model = load_model("./modeloGrey9M.h5") - self.num2label = {0:'COVID-19', 1:'NORMAL', 2:'Viral Pneumonia'} - self.dims = self.model.input_shape[1:3] - - #CON UNA IMAGEN Y LAS DIMENSIONES LA LEE DE FORMA ADECUADA - def _get_img_array(self, img_path, size): - # `img` is a PIL image of size 299x299 - img = keras.preprocessing.image.load_img(img_path, target_size=size, color_mode="grayscale") - # `array` is a float32 Numpy array of shape (299, 299, 3) - array = keras.preprocessing.image.img_to_array(img) - # We add a dimension to transform our array into a "batch" - # of size (1, 299, 299, 3) - array = np.expand_dims(array, axis=0) - return array - - def _make_gradcam_heatmap(self,img_array, model, last_conv_layer_name, pred_index=None): - # First, we create a model that maps the input image to the activations - # of the last conv layer as well as the output predictions - grad_model = tf.keras.models.Model( - [model.inputs], [model.get_layer(last_conv_layer_name).output, model.output] - ) - - # Then, we compute the gradient of the top predicted class for our input image - # with respect to the activations of the last conv layer - with tf.GradientTape() as tape: - last_conv_layer_output, preds = grad_model(img_array) - if pred_index is None: - pred_index = tf.argmax(preds[0]) - class_channel = preds[:, pred_index] - - # This is the gradient of the output neuron (top predicted or chosen) - # with regard to the output feature map of the last conv layer - grads = tape.gradient(class_channel, last_conv_layer_output) - - # This is a vector where each entry is the mean intensity of the gradient - # over a specific feature map channel - pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) - - # We multiply each channel in the feature map array - # by "how important this channel is" with regard to the top predicted class - # then sum all the channels to obtain the heatmap class activation - last_conv_layer_output = last_conv_layer_output[0] - heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis] - heatmap = tf.squeeze(heatmap) - - # For visualization purpose, we will also normalize the heatmap between 0 & 1 - heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap) - return heatmap.numpy() - - - #A partir de una imagen retorna su clase mas problable tras la prediccion del modelo - def predict(self,img_path): - img = image.load_img(img_path,target_size=self.dims, color_mode="grayscale") - img = np.asarray(img)/255.0 - img = np.expand_dims(img, axis=0) - img = np.expand_dims(img, axis=3) - - output = self.model.predict(img)#Aqui esta el vector de probabilidades - prediction = np.argmax(output, axis=1).astype(np.int) - - return self.num2label[prediction[0]],output - def gradCam(self, img_path, cam_path="./static/GRADCAM_img/cam.jpg"): - model_builder = keras.applications.xception.Xception - preprocess_input = keras.applications.xception.preprocess_input - decode_predictions = keras.applications.xception.decode_predictions - last_conv_layer_name = "conv2d_9" - - img_array = preprocess_input(self._get_img_array(img_path, size=self.dims)) - # Remove last layer's softmax - _model=self.model - _model.layers[-1].activation = None - - heatmap = self._make_gradcam_heatmap(img_array, _model, last_conv_layer_name) - superimposed_img = self._save_and_display_gradcam(img_path,heatmap,cam_path) - return heatmap, superimposed_img - - def _save_and_display_gradcam(self,img_path, heatmap, cam_path, alpha=0.4): - # Load the original image - - img = keras.preprocessing.image.load_img(img_path, color_mode="grayscale") - img = keras.preprocessing.image.img_to_array(img) - - # Rescale heatmap to a range 0-255 - heatmap = np.uint8(255 * heatmap) - - # Use jet colormap to colorize heatmap - jet = cm.get_cmap("jet") - - # Use RGB values of the colormap - jet_colors = jet(np.arange(256))[:, :3] - jet_heatmap = jet_colors[heatmap] - - # Create an image with RGB colorized heatmap - jet_heatmap = keras.preprocessing.image.array_to_img(jet_heatmap) - jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0])) - jet_heatmap = keras.preprocessing.image.img_to_array(jet_heatmap) - - # Superimpose the heatmap on original image - superimposed_img = jet_heatmap * alpha + img - superimposed_img = keras.preprocessing.image.array_to_img(superimposed_img) - - # Save the superimposed image - superimposed_img.save(cam_path) - - # Display Grad CAM - return superimposed_img